Ebpay生命医药出版社
  • Ebpay生命

    102912

    论文已发表

    提 交 论 文


    注册即可获取Ebpay生命的最新动态

    注 册



    IF 收录期刊



    • 3.4 Breast Cancer (Dove Med Press)
    • 3.2 Clin Epidemiol
    • 2.6 Cancer Manag Res
    • 2.9 Infect Drug Resist
    • 3.7 Clin Interv Aging
    • 5.1 Drug Des Dev Ther
    • 3.1 Int J Chronic Obstr
    • 6.6 Int J Nanomed
    • 2.6 Int J Women's Health
    • 2.9 Neuropsych Dis Treat
    • 2.8 OncoTargets Ther
    • 2.0 Patient Prefer Adher
    • 2.2 Ther Clin Risk Manag
    • 2.5 J Pain Res
    • 3.0 Diabet Metab Synd Ob
    • 3.2 Psychol Res Behav Ma
    • 3.4 Nat Sci Sleep
    • 1.8 Pharmgenomics Pers Med
    • 2.0 Risk Manag Healthc Policy
    • 4.1 J Inflamm Res
    • 2.0 Int J Gen Med
    • 3.4 J Hepatocell Carcinoma
    • 3.0 J Asthma Allergy
    • 2.2 Clin Cosmet Investig Dermatol
    • 2.4 J Multidiscip Healthc



    更多详情 >>





    已发表论文

    基于深度学习的实时黄褐斑严重程度多分类框架:临床图像分析与模型可解释性评估

     

    Authors Zhang J, Jiang Q, Chen Q, Hu B, Chen L

    Received 15 December 2024

    Accepted for publication 16 April 2025

    Published 29 April 2025 Volume 2025:18 Pages 1033—1044

    DOI http://doi.org/10.2147/CCID.S508580

    Checked for plagiarism Yes

    Review by Single anonymous peer review

    Peer reviewer comments 5

    Editor who approved publication: Dr Michela Starace

    Jun Zhang, Qian Jiang, Qiang Chen, Bin Hu, Liuqing Chen

    Department of Dermatology, Wuhan No. 1 hospital, Wuhan, Hubei, People’s Republic of China

    Correspondence: Bin Hu, Email binhu88@126.com Liuqing Chen, Email chlq35@126.com

    Background: Melasma is a prevalent pigmentary disorder characterized by treatment resistance and high recurrence. Existing assessment methods like the Melasma Area and Severity Index (MASI) are subjective and prone to inter-observer variability.
    Objective: This study aimed to develop an AI-assisted, real-time melasma severity classification framework based on deep learning and clinical facial images.
    Methods: A total of 1368 anonymized facial images were collected from clinically diagnosed melasma patients. After image preprocessing and MASI-based labeling, six CNN architectures were trained and evaluated using PyTorch. Model performance was assessed through accuracy, precision, recall, F1-score, AUC, and interpretability via Layer-wise Relevance Propagation (LRP).
    Results: GoogLeNet achieved the best performance, with an accuracy of 0.755 and an F1-score of 0.756. AUC values across severity levels reached 0.93 (mild), 0.86 (moderate), and 0.94 (severe). LRP analysis confirmed GoogLeNet’s superior feature attribution.
    Conclusion: This study presents a robust, interpretable deep learning model for melasma severity classification, offering enhanced diagnostic consistency. Future work will integrate multimodal data for more comprehensive assessment.

    Keywords: melasma, deep learning, convolutional neural networks, MASI, clinical decision support

    Download Article[PDF]