Ebpay生命医药出版社

Ebpay生命

102445

论文已发表

提 交 论 文


注册即可获取Ebpay生命的最新动态

注 册



IF 收录期刊



  • 3.3 Breast Cancer (Dove Med Press)
  • 3.4 Clin Epidemiol
  • 2.5 Cancer Manag Res
  • 2.9 Infect Drug Resist
  • 3.5 Clin Interv Aging
  • 4.7 Drug Des Dev Ther
  • 2.7 Int J Chronic Obstr
  • 6.6 Int J Nanomed
  • 2.5 Int J Women's Health
  • 2.5 Neuropsych Dis Treat
  • 2.7 OncoTargets Ther
  • 2.0 Patient Prefer Adher
  • 2.3 Ther Clin Risk Manag
  • 2.5 J Pain Res
  • 2.8 Diabet Metab Synd Ob
  • 2.8 Psychol Res Behav Ma
  • 3.0 Nat Sci Sleep
  • 1.8 Pharmgenomics Pers Med
  • 2.7 Risk Manag Healthc Policy
  • 4.2 J Inflamm Res
  • 2.1 Int J Gen Med
  • 4.2 J Hepatocell Carcinoma
  • 3.7 J Asthma Allergy
  • 1.9 Clin Cosmet Investig Dermatol
  • 2.7 J Multidiscip Healthc



更多详情 >>





已发表论文

在肥胖型载脂蛋白 E 缺陷小鼠中,顺利获得 AMPK 信号通路减少局部内皮损伤,Intermedin1-53 改善动脉粥样硬化

 

Authors Zhu HX, Ren JL, Cao WJ, Wang R, Chen LL, Gao Q, Zhou YB 

Received 13 December 2024

Accepted for publication 1 May 2025

Published 22 May 2025 Volume 2025:18 Pages 6583—6596

DOI http://doi.org/10.2147/JIR.S505695

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Professor Ning Quan

Han-Xu Zhu,1,* Jin-Ling Ren,2,* Wen-Juan Cao,1 Rui Wang,3 Lei-Lei Chen,1,4 Qing Gao,1 Ye-Bo Zhou1 

1Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China; 2Department of Pathology and Pathophysiology, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China; 3Laboratory of Cardiovascular Bioactive Molecule, Peking University, Beijing, People’s Republic of China; 4Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China

*These authors contributed equally to this work

Correspondence: Lei-Lei Chen, Email chenlei19762002@163.com Qing Gao, Email gaoqing@njmu.edu.cn

Background: Atherosclerotic cardiovascular diseases (CVD) are commonly found in obesity. Endothelial inflammation accompanied by oxidative stress is a crucial risk factor and a key initiating step for the pathogenesis of atherosclerosis (AS). In the present study, the role and mechanism of intermedin (IMD), a potent active peptide, in endothelial damage in AS in obese apolipoprotein E-deficient (apoE−/−) mice were investigated.
Methods and Results: In vivo, IMD1-53 was infused via Alzet mini-osmotic pump in apoE−/− mice with high-fat diet (HFD) for 4 weeks. In vitro, palmitic acid (PA) and oxidized low density lipoprotein (Ox-LDL) were used to stimulate human umbilical vein endothelial cells (HUVECs) for exploring the potential mechanism of IMD1-53 action on endothelial damage. We found that IMD1-53 application remarkably improved plasma lipid profiles, hepatic lipid accumulation and its cholesterol levels, and vascular lipid accumulation and lesion sizes. Moreover, IMD1-53 markedly increased eNOS expression and decreased the levels of vascular inflammatory factors and ROS. In vitro, the combination of PA and Ox-LDL caused more severe inflammatory and oxidative damages and lower expression of eNOS, which were significantly inhibited by IMD1-53. IMD1-53 notably induced AMPK phosphorylation, and the inhibition of AMPK activation markedly reversed the anti-inflammatory and antioxidant effects of IMD1-53 on PA and Ox-LDL-treated HUVECs.
Conclusion: IMD1-53 improves AS partially by reducing endothelial inflammatory and oxidative damage via AMPK signaling pathway and decreasing vascular lipid accumulation involving the improvement of lipid profiles in blood and in liver in a state of obesity.

Keywords: intermedin, atherosclerosis, endothelium, inflammation, oxidative stress

Download Article[PDF]