Ebpay生命医药出版社

Ebpay生命

102494

论文已发表

提 交 论 文


注册即可获取Ebpay生命的最新动态

注 册



IF 收录期刊



  • 3.3 Breast Cancer (Dove Med Press)
  • 3.4 Clin Epidemiol
  • 2.5 Cancer Manag Res
  • 2.9 Infect Drug Resist
  • 3.5 Clin Interv Aging
  • 4.7 Drug Des Dev Ther
  • 2.7 Int J Chronic Obstr
  • 6.6 Int J Nanomed
  • 2.5 Int J Women's Health
  • 2.5 Neuropsych Dis Treat
  • 2.7 OncoTargets Ther
  • 2.0 Patient Prefer Adher
  • 2.3 Ther Clin Risk Manag
  • 2.5 J Pain Res
  • 2.8 Diabet Metab Synd Ob
  • 2.8 Psychol Res Behav Ma
  • 3.0 Nat Sci Sleep
  • 1.8 Pharmgenomics Pers Med
  • 2.7 Risk Manag Healthc Policy
  • 4.2 J Inflamm Res
  • 2.1 Int J Gen Med
  • 4.2 J Hepatocell Carcinoma
  • 3.7 J Asthma Allergy
  • 1.9 Clin Cosmet Investig Dermatol
  • 2.7 J Multidiscip Healthc



更多详情 >>





已发表论文

在癌症中靶向 CREBRF:机制见解与未来方向

 

Authors Lv B , Zhang D 

Received 12 February 2025

Accepted for publication 24 May 2025

Published 30 May 2025 Volume 2025:19 Pages 341—350

DOI http://doi.org/10.2147/BTT.S522325

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Shein-Chung Chow

Baixue Lv, Dongdong Zhang

Department of Oncology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, People’s Republic of China

Correspondence: Dongdong Zhang, Department of Oncology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Jiefang Road No. 15, Xiangyang, Hubei, 441000, People’s Republic of China, Tel +8615072278600, Email zhangdongdong@whu.edu.cn

Abstract: Luman/CREB3 recruitment factor (LRF), also known as CREBRF, was initially identified as a cellular binding protein of Luman through yeast two-hybrid screening of a human brain cDNA library. CREBRF plays a critical role in various biological processes, with its functions garnering significant attention in the field of oncology. Notably, CREBRF is involved in endoplasmic reticulum (ER) stress and regulates the unfolded protein response (UPR), leading to an accumulation of misfolded proteins. This can ultimately result in cellular dysfunction, apoptosis, and even tumorigenesis. In solid tumors, hypoxia is a common condition, and CREBRF has been implicated in hypoxia-induced autophagy, which promotes tumor cell proliferation. Depending on the tumor type and microenvironment, CREBRF exerts diverse effects by modulating distinct signaling pathways. This review summarizes CREBRF’s involvement in ER stress, cell cycle regulation, autophagy, and the mechanisms through which it influences tumor initiation and progression across various cancer types. Furthermore, the potential of CREBRF as a therapeutic target in cancer treatment is discussed, providing insights into future research and clinical applications.

Keywords: CREBRF, ER, hypoxia, tumor, autophagy, therapeutic target

Download Article[PDF]