Ebpay生命医药出版社

Ebpay生命

100763

论文已发表

提 交 论 文


注册即可获取Ebpay生命的最新动态

注 册



IF 收录期刊



  • 3.3 Breast Cancer (Dove Med Press)
  • 3.4 Clin Epidemiol
  • 2.5 Cancer Manag Res
  • 2.9 Infect Drug Resist
  • 3.5 Clin Interv Aging
  • 4.7 Drug Des Dev Ther
  • 2.7 Int J Chronic Obstr
  • 6.6 Int J Nanomed
  • 2.5 Int J Women's Health
  • 2.5 Neuropsych Dis Treat
  • 2.7 OncoTargets Ther
  • 2.0 Patient Prefer Adher
  • 2.3 Ther Clin Risk Manag
  • 2.5 J Pain Res
  • 2.8 Diabet Metab Synd Ob
  • 2.8 Psychol Res Behav Ma
  • 3.0 Nat Sci Sleep
  • 1.8 Pharmgenomics Pers Med
  • 2.7 Risk Manag Healthc Policy
  • 4.2 J Inflamm Res
  • 2.1 Int J Gen Med
  • 4.2 J Hepatocell Carcinoma
  • 3.7 J Asthma Allergy
  • 1.9 Clin Cosmet Investig Dermatol
  • 2.7 J Multidiscip Healthc



更多详情 >>





已发表论文

钙离子 (Ca2+)/钙调素依赖性蛋白激酶 II 在有 L-DOPA (L-3, 4_ 二羟苯丙氨酸诱导的运动障碍的大鼠的纹状体的 NMDA 受体 (N-甲基-D-天冬氨酸受体亚细胞表达中的作用

 

Authors Gan J, Qi C, Liu Z

Published Date April 2015 Volume 2015:9 Pages 2119—2128

DOI http://dx.doi.org/10.2147/DDDT.S73868

Received 6 September 2014, Accepted 24 November 2014, Published 13 April 2015

Background: The role of N-Methyl-D-aspartate (NMDA) receptors is critical to the development of l-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in Parkinson’s disease (PD). Ca2+/calmodulin-dependent protein kinase II (CaMKII) is thought to regulate the expression and activation of NMDA receptors in LID, but the interaction between LID and CaMKII-modulated NMDA receptor activity is not clear so far.
Methods: We used 6-hydroxydopamine-lesioned rats to create PD rat model, and at least 21 days of L-DOPA was administrated followed with or without microinjection of CaMKII inhibitor KN-93 into the lesioned striatum of all the PD rats and sham rats. A surface receptor cross-linking assay was used to distinguish expression of striatal NMDA receptors in surface and intracellular compartments.
Results: L-DOPA treatment enhanced surface levels of GluN1 expression and reduced its intracellular expression, but did not change total levels of GluN1 protein in the lesioned striatum. In contrast, L-DOPA decreased GluN2A surface expression but increased its intracellular expression. L-DOPA increased GluN2B expression preferentially in the surface compartment. We also found that L-DOPA increased CaMKII autophosphorylation at T286 in striatal neurons. The inhibition of CaMKII by microinjecting CaMKII inhibitor KN-93 into the lesioned striatum largely reversed the L-DOPA-induced changes in three subunits. In addition, dyskinetic behaviors of animals were observed alleviated after treatment of KN-93.
Conclusion: Our research indicates that long-term L-DOPA administration activates CaMKII in striatal neurons. Activated CaMKII is involved at least in part in mediating L-DOPA-induced changes of NMDA receptors surface/intracellular expression.
Keywords: glutamate, GluN1, GluN2A, GluN2B, dopamine, KN-93





Download Article[PDF]