Ebpay生命医药出版社

Ebpay生命

100763

论文已发表

提 交 论 文


注册即可获取Ebpay生命的最新动态

注 册



IF 收录期刊



  • 3.3 Breast Cancer (Dove Med Press)
  • 3.4 Clin Epidemiol
  • 2.5 Cancer Manag Res
  • 2.9 Infect Drug Resist
  • 3.5 Clin Interv Aging
  • 4.7 Drug Des Dev Ther
  • 2.7 Int J Chronic Obstr
  • 6.6 Int J Nanomed
  • 2.5 Int J Women's Health
  • 2.5 Neuropsych Dis Treat
  • 2.7 OncoTargets Ther
  • 2.0 Patient Prefer Adher
  • 2.3 Ther Clin Risk Manag
  • 2.5 J Pain Res
  • 2.8 Diabet Metab Synd Ob
  • 2.8 Psychol Res Behav Ma
  • 3.0 Nat Sci Sleep
  • 1.8 Pharmgenomics Pers Med
  • 2.7 Risk Manag Healthc Policy
  • 4.2 J Inflamm Res
  • 2.1 Int J Gen Med
  • 4.2 J Hepatocell Carcinoma
  • 3.7 J Asthma Allergy
  • 1.9 Clin Cosmet Investig Dermatol
  • 2.7 J Multidiscip Healthc



更多详情 >>





视频

Artificial Intelligence Analysis of Mandibular Movements Enables Accurate Detection of Phasic Sleep Bruxism in OSA Patients: A Pilot Study

 

Authors Martinot JB, Le-Dong NN, Cuthbert V, Denison S, Gozal D, Lavigne G, Pépin JL

Received 25 May 2021

Accepted for publication 5 August 2021

Published 23 August 2021 Volume 2021:13 Pages 1449—1459

DOI http://doi.org/10.2147/NSS.S320664

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Ahmed S BaHammam

Purpose: Sleep bruxism (SBx) activity is classically identified by capturing masseter and/or temporalis masticatory muscles electromyographic activity (EMG-MMA) during in-laboratory polysomnography (PSG). We aimed to identify stereotypical mandibular jaw movements (MJM) in patients with SBx and to develop rhythmic masticatory muscles activities (RMMA) automatic detection using an artificial intelligence (AI) based approach.
Patients and Methods: This was a prospective, observational study of 67 suspected obstructive sleep apnea (OSA) patients in whom PSG with masseter EMG was performed with simultaneous MJM recordings. The system used to collect MJM consisted of a small hardware device attached on the chin that communicates to a cloud-based infrastructure. An extreme gradient boosting (XGB) multiclass classifier was trained on 79,650 10-second epochs of MJM data from the 39 subjects with a history of SBx targeting 3 labels: RMMA episodes (n=1072), micro-arousals (n=1311), and MJM occurring at the breathing frequency (n=77,267).
Results: Validated on unseen data from 28 patients, the model showed a very good epoch-by-epoch agreement (Kappa = 0.799) and balanced accuracy of 86.6% was found for the MJM events when using RMMA standards. The RMMA episodes were detected with a sensitivity of 84.3%. Class-wise receiver operating characteristic (ROC) curve analysis confirmed the well-balanced performance of the classifier for RMMA (ROC area under the curve: 0.98, 95% confidence interval [CI] 0.97– 0.99). There was good agreement between the MJM analytic model and manual EMG signal scoring of RMMA (median bias − 0.80 events/h, 95% CI − 9.77 to 2.85).
Conclusion: SBx can be reliably identified, quantified, and characterized with MJM when subjected to automated analysis supported by AI technology.
Keywords: masticatory muscular activities, machine learning, jaw movement




Download Article[PDF]