Ebpay生命医药出版社

Ebpay生命

100763

论文已发表

提 交 论 文


注册即可获取Ebpay生命的最新动态

注 册



IF 收录期刊



  • 3.3 Breast Cancer (Dove Med Press)
  • 3.4 Clin Epidemiol
  • 2.5 Cancer Manag Res
  • 2.9 Infect Drug Resist
  • 3.5 Clin Interv Aging
  • 4.7 Drug Des Dev Ther
  • 2.7 Int J Chronic Obstr
  • 6.6 Int J Nanomed
  • 2.5 Int J Women's Health
  • 2.5 Neuropsych Dis Treat
  • 2.7 OncoTargets Ther
  • 2.0 Patient Prefer Adher
  • 2.3 Ther Clin Risk Manag
  • 2.5 J Pain Res
  • 2.8 Diabet Metab Synd Ob
  • 2.8 Psychol Res Behav Ma
  • 3.0 Nat Sci Sleep
  • 1.8 Pharmgenomics Pers Med
  • 2.7 Risk Manag Healthc Policy
  • 4.2 J Inflamm Res
  • 2.1 Int J Gen Med
  • 4.2 J Hepatocell Carcinoma
  • 3.7 J Asthma Allergy
  • 1.9 Clin Cosmet Investig Dermatol
  • 2.7 J Multidiscip Healthc



更多详情 >>





视频

Anticancer activity of the intraperitoneal-delivered DFP-10825, the cationic liposome-conjugated RNAi molecule targeting thymidylate synthase, on peritoneal disseminated ovarian cancer xenograft model

 

Authors Iizuka K, Jin C, Eshima K, Hong MH, Eshima K, Fukushima M

Received 9 November 2017

Accepted for publication 4 January 2018

Published 29 March 2018 Volume 2018:12 Pages 673—683

DOI http://doi.org/10.2147/DDDT.S156635

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Rammohan Devulapally

Peer reviewer comments 2

Editor who approved publication: Dr Georgios Panos

Introduction: Peritoneal disseminated ovarian cancer is one of the most difficult cancers to treat with conventional anti-cancer drugs and the treatment options are very limited, although an intraperitoneal (ip) paclitaxel has shown some clinical benefit. Therefore, treatment of peritoneal disseminated ovarian cancer is a highly unmet medical need and it is urgent to develop a new ip delivered drug regulating the fast DNA synthesis.
Methods:
 We developed a unique RNAi molecule consisting of shRNA against the thymidylate synthase (TS) and a cationic liposome (DFP-10825) and tested its antitumor activity and PK profile in peritoneally disseminated human ovarian cancer ascites models by the luciferase gene-transfected SCID mice. DFP-10825 alone, paclitaxel alone or combination with DFP-10825 and paclitaxel were administered in an ip route to the tumor-bearing mice. The TS expression level was measured by conventional RT-PCR. The anti-tumor activity and host survival benefit by DFP-10825 treatment on tumor-bearing mice were observed as resulting from the specific TS mRNA knock-down in tumors.

Results: DFP-10825 alone significantly suppressed the growth of SKOV3-luc tumore ascites cells and further extended the survival time of these tumor-bearing mice. Combination with the ip paclitaxel augmented the antitumor efficacy of DFP-10825 and significantly prolonged the survival time in the tumor-bearing mice. Short-hairpin RNA for TS (TS shRNA) levels derived from DFP-10825 in the ascetic fluid were maintained at a nM range across 24 hours but not detected in the plasma, suggesting that TS shRNA is relatively stable in the peritoneal cavity, to be able to exert its anti-tumor activity, but not in blood stream, indicating little or no systemic effect.
Conclusion: Collectively, the ip delivery of DFP-10825, TS shRNA conjugated with cationic liposome, shows a favorable antitumor activity without systemic adverse events via the stable localization of TS shRNA for a sufficient time and concentration in the peritoneal cavity of the peritoneally disseminated human ovarian cancer-bearing mice.
Keywords: DFP-10825, thymidylate synthase, short-hairpin RNA, cationic liposome, ip delivery, intraperitoneal dissemination, ovarian cancer



摘要视频链接:IP chemotherapy with DFP-10825, TSshRNA-liposome






Download Article[PDF]