Ebpay生命医药出版社
  • Ebpay生命

    100763

    论文已发表

    提 交 论 文


    注册即可获取Ebpay生命的最新动态

    注 册



    IF 收录期刊



    • 3.3 Breast Cancer (Dove Med Press)
    • 3.4 Clin Epidemiol
    • 2.5 Cancer Manag Res
    • 2.9 Infect Drug Resist
    • 3.5 Clin Interv Aging
    • 4.7 Drug Des Dev Ther
    • 2.7 Int J Chronic Obstr
    • 6.6 Int J Nanomed
    • 2.5 Int J Women's Health
    • 2.5 Neuropsych Dis Treat
    • 2.7 OncoTargets Ther
    • 2.0 Patient Prefer Adher
    • 2.3 Ther Clin Risk Manag
    • 2.5 J Pain Res
    • 2.8 Diabet Metab Synd Ob
    • 2.8 Psychol Res Behav Ma
    • 3.0 Nat Sci Sleep
    • 1.8 Pharmgenomics Pers Med
    • 2.7 Risk Manag Healthc Policy
    • 4.2 J Inflamm Res
    • 2.1 Int J Gen Med
    • 4.2 J Hepatocell Carcinoma
    • 3.7 J Asthma Allergy
    • 1.9 Clin Cosmet Investig Dermatol
    • 2.7 J Multidiscip Healthc



    更多详情 >>





    视频

    Amino acid composition of nanofibrillar self-assembling peptide hydrogels affects responses of periodontal tissue cells in vitro

     

    Authors Koch F, Wolff A, Mathes S, Pieles U, Saxer SS, Kreikemeyer B, Peters K

    Received 10 May 2018

    Accepted for publication 17 July 2018

    Published 23 October 2018 Volume 2018:13 Pages 6717—6733

    DOI http://doi.org/10.2147/IJN.S173702

    Checked for plagiarism Yes

    Review by Single-blind

    Peer reviewers approved by Dr Farooq Shiekh

    Peer reviewer comments 2

    Editor who approved publication: Dr Thomas J. Webster

    Background: The regeneration of tissue defects at the interface between soft and hard tissue, eg, in the periodontium, poses a challenge due to the divergent tissue requirements. A class of biomaterials that may support the regeneration at the soft-to-hard tissue interface are self-assembling peptides (SAPs), as their physicochemical and mechanical properties can be rationally designed to meet tissue requirements.
    Materials and methods: In this work, we investigated the effect of two single-component and two complementary β-sheet forming SAP systems on their hydrogel properties such as nanofibrillar architecture, surface charge, and protein adsorption as well as their influence on cell adhesion, morphology, growth, and differentiation.
    Results: We showed that these four 11-amino acid SAP (P11-SAP) hydrogels possessed physicochemical characteristics dependent on their amino acid composition that allowed variabilities in nanofibrillar network architecture, surface charge, and protein adsorption (eg, the single-component systems demonstrated an ~30% higher porosity and an almost 2-fold higher protein adsorption compared with the complementary systems). Cytocompatibility studies revealed similar results for cells cultured on the four P11-SAP hydrogels compared with cells on standard cell culture surfaces. The single-component P11-SAP systems showed a 1.7-fold increase in cell adhesion and cellular growth compared with the complementary P11-SAP systems. Moreover, significantly enhanced osteogenic differentiation of human calvarial osteoblasts was detected for the single-component P11-SAP system hydrogels compared with standard cell cultures.
    Conclusion: Thus, single-component system P11-SAP hydrogels can be assessed as suitable scaffolds for periodontal regeneration therapy, as they provide adjustable, extracellular matrix-mimetic nanofibrillar architecture and favorable cellular interaction with periodontal cells.
    Keywords: self-assembling peptides, SAPs, P11-SAP hydrogels, surface charge, protein adsorption, cell proliferation, osteogenic differentiation, periodontal tissue regeneration


     

    摘要视频链接:Cellular response to nanofibrillar SAP hydrogels






    Download Article[PDF]